I. Formation of multi-planetary systems II. Open Exoplanet Catalogue

Hanno Rein @ Niels Bohr Institute, Copenhagen, February 2013

Database

Milky Way

1. Exoplanet News

Background Information
h About / Add-ons

Formation of multiplanetary systems

Planet formation

Image credit: NASA/JPL-Caltech

Migration - Type I

- Low mass planets
- No gap opening in disc
- Migration rate is fast
- Depends strongly on thermodynamics of the disc

Migration - Type II

- Massive planets (typically bigger than Saturn)
- Opens a (clear) gap
- Migration rate is slow
- Follows viscous evolution of the disc

Migration - Type III

- Massive disc
- Intermediate planet mass
- Tries to open gap
- Very fast, few orbital timescales

Take home message I

planet + disc $=$ migration

Radial velocity planets

Cumulative period ratio in multiplanetary systems

- Periods of systems with massive planets tend to pile up near integer ratios
- Most prominent features at 4:I, 3:I, 2:I, 3:2

Take home message II

2 planets + migration $=$ resonance

HD45364

HD45364

HD 45364 b
-

Pluto
Mercury
Mars
Venus

Earth

Neptune
Uranus

Correia et al 2009, Open Exoplanet Catalogue

Formation scenario for HD45364

Rein, Papaloizou \& Kley 2010

Formation scenario for HD45364

Massive disc (5 times MMSN)

- Short, rapid Type III migration
- Passage of 2:I resonance
- Capture into 3:2 resonance

Large scale-height (0.07)

- Slow Type I migration once in resonance
- Resonance is stable
- Consistent with radiation hydrodynamics

Formation scenario leads to a better 'fit'

Parameter	Unit	Correia et al. (2009)	Simulation F5 b
$M \sin i$	[M ${ }_{\text {Jup }}$]	0.18720 .6579	0.18720 .6579
M_{*}	M_{\odot}]	0.82	0.82
a	AU]	$0.6813 \quad 0.8972$	$0.6804 \quad 0.8994$
e		$0.17 \pm 0.02 \quad 0.097 \pm 0.012$	$0.036 \quad 0.017$
λ	[deg]	$105.8 \pm 1.4 \quad 269.5 \pm 0.6$	352.5153 .9
ϖ^{a}	[deg]	$162.6 \pm 6.3 \quad 7.4 \pm 4.3$	$87.9 \quad 292.2$
$\sqrt{\chi^{2}}$		$\begin{gathered} 2.79 \\ 2453500 \end{gathered}$	$\begin{gathered} 2.76^{b}(3.51) \\ 2453500 \end{gathered}$
Date	[JD]		

Rein, Papaloizou \& Kley 2010

Take home message III

Resonant systems tell us something about the (currently) unobservable formation phase.

Migration in a turbulent disc

Turbulent disc

- Angular momentum transport
- Magnetorotational instability (MRI)
- Density perturbations interact gravitationally with planets
- Stochastic forces lead to random walk
- Large uncertainties in strength of forces

Animation from Nelson \& Papaloizou 2004 Random forces measured by Laughlin et al. 2004, Nelson 2005, Oischi et al. 2007

Stochastic Migration

REBOUND code, Rein \& Papaloizou 2010, Crida et al 2010

REBOUND Demo

Radial velocity planets

Cumulative period ratio in multiplanetary systems

- Periods of systems with massive planets tend to pile up near integer ratios
- Most prominent features at 4:I, 3:I, 2:I, 3:2

Kepler's transiting planet candidates

- Period ratio distribution much smoother for small mass planets
- Deficiencies near 4:3, 3:2, 2: 1
- Excess slightly outside of the exact commensurability

Rein, Payne, Veras \& Ford (2012)

Random walk

semi-major axis

time

Rein \& Papaloizou 2009

Analytic growth rates for I planet

$$
\begin{aligned}
& (\Delta a)^{2}=4 \frac{D t}{n^{2}} \\
& (\Delta \varpi)^{2}=\frac{2.5}{e^{2}} \frac{\gamma D t}{n^{2} a^{2}} \\
& (\Delta e)^{2}=2.5 \frac{\gamma D t}{n^{2} a^{2}}
\end{aligned}
$$

Rein \& Papaloizou 2009, Adams et al 2009, Rein 2010

Testing stochastic migration: Method

Architecture and masses from observed KOIs

Placing planets in a MMSN, further out, further apart, randomizing all angles

N -body simulation with migration forces

Testing stochastic migration:Advantages

Comparison of statistical quantities

- Period ratio distribution
- Eccentricity distribution
- TTVs

Comparison of individual systems

- Especially interesting for multi-planetary systems
- Can create multiple realizations of each system

No synthesis of a planet population required

- Observed masses
- Observed architectures

Result I: Smooth migration alone is not enough

Rein 2012

Result II: Stochastic migration works much better

Rein 20I2, Rein \& Papaloizou 2009

Take home message IV

Small mass planets might show signs of stochastic migration.

Conclusions Part I

Conclusions

Formation of multi-planetary systems

The number of multi-planetary systems increases almost every week.
Kepler discovered a large number of planets but most are not suitable for a detailed individual analysis.

Multi-planetary system provide insight in otherwise unobservable formation phase. We already understand many details of the migration history of exoplanets.

GJ876 formed in the presence of a disc with dissipative forces
HD45364 formed in a massive disc
HDI283II formed in a turbulent disc
Kepler planets formed in a disk, pushed out of resonance by stochastic migration
.... not the end of the story

Open Exoplanet Catalogue

Other exoplanet catalogues

Centralized

- Impossible to correct typos, add data without sending an e-mail to the person in charge
- Closed ecosystem

Web-based

- Website are badly written
- Requires flash or java plugin
- Need a constant internet connection
- Restricted to a very limited, predefined set of possible queries

Slow and outdated

- It can take days/weeks/months for new planets to be added
- Maintainer can be holiday or abandon the project

Old-fashioned formats

- Static tables are not adequate to represent diverse dataset
- Almost impossible to include binaryl triple/quadruple systems
- Not flexible when adding new data
- Unintuitive to parse

Open Exoplanet Catalogue

Open source philosophy

- Unrestrictive MIT license
- Community project
- Everyone can contribute and modify data
- Everyone can expand it
- Distributed, no need for a server/website
- Private clones with confidential data

Based on git

- Distributed version control system
- Used by Linux kernel and most other open source projects
- Every single value, every change ever made is logged, verifiable

Ready to go

- 674 systems, 51 binary system, 870 exoplanets, 9 solar system objects, 2740 KOI objects
- ~10 million users

Hierarchical data structure

- Uses plain XML
- Can represent arbitrary configurations in systems with stellar multiplicity >1
- Extremely easy and intuitive to parse in almost any language
- Compresses extremely well
- size $\sim 100 \mathrm{~KB}$

Demo

OpenExoplanetCatalogue.com

 arXiv:12|1.7121